Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLOS global public health ; 2(6), 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2258132

RESUMEN

COVID-19 mortality rate has not been formally assessed in Nigeria. Thus, we aimed to address this gap and identify associated mortality risk factors during the first and second waves in Nigeria. This was a retrospective analysis of national surveillance data from all 37 States in Nigeria between February 27, 2020, and April 3, 2021. The outcome variable was mortality amongst persons who tested positive for SARS-CoV-2 by Reverse-Transcriptase Polymerase Chain Reaction. Incidence rates of COVID-19 mortality was calculated by dividing the number of deaths by total person-time (in days) contributed by the entire study population and presented per 100,000 person-days with 95% Confidence Intervals (95% CI). Adjusted negative binomial regression was used to identify factors associated with COVID-19 mortality. Findings are presented as adjusted Incidence Rate Ratios (aIRR) with 95% CI. The first wave included 65,790 COVID-19 patients, of whom 994 (1∙51%) died;the second wave included 91,089 patients, of whom 513 (0∙56%) died. The incidence rate of COVID-19 mortality was higher in the first wave [54∙25 (95% CI: 50∙98–57∙73)] than in the second wave [19∙19 (17∙60–20∙93)]. Factors independently associated with increased risk of COVID-19 mortality in both waves were: age ≥45 years, male gender [first wave aIRR 1∙65 (1∙35–2∙02) and second wave 1∙52 (1∙11–2∙06)], being symptomatic [aIRR 3∙17 (2∙59–3∙89) and 3∙04 (2∙20–4∙21)], and being hospitalised [aIRR 4∙19 (3∙26–5∙39) and 7∙84 (4∙90–12∙54)]. Relative to South-West, residency in the South-South and North-West was associated with an increased risk of COVID-19 mortality in both waves. In conclusion, the rate of COVID-19 mortality in Nigeria was higher in the first wave than in the second wave, suggesting an improvement in public health response and clinical care in the second wave. However, this needs to be interpreted with caution given the inherent limitations of the country's surveillance system during the study.

2.
PLOS Glob Public Health ; 2(6): e0000169, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2021474

RESUMEN

COVID-19 mortality rate has not been formally assessed in Nigeria. Thus, we aimed to address this gap and identify associated mortality risk factors during the first and second waves in Nigeria. This was a retrospective analysis of national surveillance data from all 37 States in Nigeria between February 27, 2020, and April 3, 2021. The outcome variable was mortality amongst persons who tested positive for SARS-CoV-2 by Reverse-Transcriptase Polymerase Chain Reaction. Incidence rates of COVID-19 mortality was calculated by dividing the number of deaths by total person-time (in days) contributed by the entire study population and presented per 100,000 person-days with 95% Confidence Intervals (95% CI). Adjusted negative binomial regression was used to identify factors associated with COVID-19 mortality. Findings are presented as adjusted Incidence Rate Ratios (aIRR) with 95% CI. The first wave included 65,790 COVID-19 patients, of whom 994 (1∙51%) died; the second wave included 91,089 patients, of whom 513 (0∙56%) died. The incidence rate of COVID-19 mortality was higher in the first wave [54∙25 (95% CI: 50∙98-57∙73)] than in the second wave [19∙19 (17∙60-20∙93)]. Factors independently associated with increased risk of COVID-19 mortality in both waves were: age ≥45 years, male gender [first wave aIRR 1∙65 (1∙35-2∙02) and second wave 1∙52 (1∙11-2∙06)], being symptomatic [aIRR 3∙17 (2∙59-3∙89) and 3∙04 (2∙20-4∙21)], and being hospitalised [aIRR 4∙19 (3∙26-5∙39) and 7∙84 (4∙90-12∙54)]. Relative to South-West, residency in the South-South and North-West was associated with an increased risk of COVID-19 mortality in both waves. In conclusion, the rate of COVID-19 mortality in Nigeria was higher in the first wave than in the second wave, suggesting an improvement in public health response and clinical care in the second wave. However, this needs to be interpreted with caution given the inherent limitations of the country's surveillance system during the study.

4.
BMJ Glob Health ; 6(11)2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1526499

RESUMEN

BACKGROUND: With reports of surges in COVID-19 case numbers across over 50 countries, country-level epidemiological analysis is required to inform context-appropriate response strategies for containment and mitigation of the outbreak. We aimed to compare the epidemiological features of the first and second waves of COVID-19 in Nigeria. METHODS: We conducted a retrospective analysis of the Surveillance Outbreak Response Management and Analysis System data of the first and second epidemiological waves, which were between 27 February and 24 October 2020, and 25 October 2020 to 3 April 2021, respectively. Descriptive statistical measures including frequencies and percentages, test positivity rate (TPR), cumulative incidence (CI) and case fatality rates (CFRs) were compared. A p value of <0.05 was considered statistically significant. All statistical analyses were carried out in STATA V.13. RESULTS: There were 802 143 tests recorded during the study period (362 550 and 439 593 in the first and second waves, respectively). Of these, 66 121 (18.2%) and 91 644 (20.8%) tested positive in the first and second waves, respectively. There was a 21.3% increase in the number of tests conducted in the second wave with TPR increasing by 14.3%. CI during the first and second waves were 30.3/100 000 and 42.0/100 000 respectively. During the second wave, confirmed COVID-19 cases increased among females and people 30 years old or younger and decreased among urban residents and individuals with travel history within 14 days of sample collection (p value <0.001). Most confirmed cases were asymptomatic at diagnosis during both waves: 74.9% in the first wave; 79.7% in the second wave. CFR decreased during the second wave (0.7%) compared with the first wave (1.8%). CONCLUSION: Nigeria experienced a larger but less severe second wave of COVID-19. Continued implementation of public health and social measures is needed to mitigate the resurgence of another wave.


Asunto(s)
COVID-19 , Pandemias , Adulto , Femenino , Humanos , Nigeria/epidemiología , Estudios Retrospectivos , SARS-CoV-2
5.
BMJ Open ; 11(9): e049699, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1394114

RESUMEN

OBJECTIVES: This study aimed to develop and validate a symptom prediction tool for COVID-19 test positivity in Nigeria. DESIGN: Predictive modelling study. SETTING: All Nigeria States and the Federal Capital Territory. PARTICIPANTS: A cohort of 43 221 individuals within the national COVID-19 surveillance dataset from 27 February to 27 August 2020. Complete dataset was randomly split into two equal halves: derivation and validation datasets. Using the derivation dataset (n=21 477), backward multivariable logistic regression approach was used to identify symptoms positively associated with COVID-19 positivity (by real-time PCR) in children (≤17 years), adults (18-64 years) and elderly (≥65 years) patients separately. OUTCOME MEASURES: Weighted statistical and clinical scores based on beta regression coefficients and clinicians' judgements, respectively. Using the validation dataset (n=21 744), area under the receiver operating characteristic curve (AUROC) values were used to assess the predictive capacity of individual symptoms, unweighted score and the two weighted scores. RESULTS: Overall, 27.6% of children (4415/15 988), 34.6% of adults (9154/26 441) and 40.0% of elderly (317/792) that had been tested were positive for COVID-19. Best individual symptom predictor of COVID-19 positivity was loss of smell in children (AUROC 0.56, 95% CI 0.55 to 0.56), either fever or cough in adults (AUROC 0.57, 95% CI 0.56 to 0.58) and difficulty in breathing in the elderly (AUROC 0.53, 95% CI 0.48 to 0.58) patients. In children, adults and the elderly patients, all scoring approaches showed similar predictive performance. CONCLUSIONS: The predictive capacity of various symptom scores for COVID-19 positivity was poor overall. However, the findings could serve as an advocacy tool for more investments in resources for capacity strengthening of molecular testing for COVID-19 in Nigeria.


Asunto(s)
COVID-19 , Adulto , Anciano , Prueba de COVID-19 , Niño , Estudios de Cohortes , Humanos , Nigeria , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA